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ABSTRACT

Purpose: Some epidemiological studies and animal studies have reported a relationship between leukocyte
telomere length (LTL)and bone mineral density (BMD). However, the causality underlying the purported
relationship has not been determined. Here we performed a two-sample MR analysisto test the causallink
betweentelomere length and BMD.

Results:Our researchsuggestedno causallink of LTLand BMD using VW method. Theweighted median, MR-
Egger regression and MR.RAPSmethod yielded a similar pattern of effects. MR-Egger intercept test
demonstrated our results were not influenced by pleiotropy. Heterogeneitiesamong the genetic variants on
heel estimated BMD and TBBMD vanished after excluding rs6028466.4 [ S{or@-8 dzisénsitivity analysi
confirmedthe stability of our results.

ConclusionOur MR analysisdid not support causaleffect of telomere length on BMD.

Methods: We utilized 5 independent SNPgobustly associatedwith LTLasinstrument variables.The outcome
results were obtained from GWASsummary data of BMD. The two-sample MR analysiswas conducted using
IVW, weighted median, MR-Eggerregressionand MR.RAP3nethod. MR-Eggerintercept test, / 2 O K NQtegt
and I? statisticsand & f S-bn@& dzéensitivity analysiswere performed to evaluatethe horizontal pleiotropy,
heterogeneitiesand stability of these geneticvariantson BMD.

INTRODUCTION States, the prevalence of osteoporosis is estimated to
increase to more than 14 million people in 2020, and the
The incidence of agingrelated disorders has burden is projected to increase to over 3 milliowtfiees

dramatically increased in modern society, owing to the and $25.3 billion each year by 20R§. The etiology of
development of healthcare and the changes of socio osteoporosis is not well understodiis well recognized

economy and lifestyle[1]. Osteoporosis, which is that increasing age, female gender and a wide range
clinically diagnosed largely through measurement of of both environmental factors and genetic factors
bone mineral density (BMD) examined by dealergy are associated with the disea[3, 5 7]. Traditional
X-ray absorptiometry (DXA), is a common agirejated observational studies reported that the potential risk
systemic skeletal disease, characterized by low bone factors,including glucocorticoidherapy, low body mass
mass, micrearchitectural deteriorationof bone tissue index (BMI), physical inactivity, smoking, heavy
and an increased risk to fractui 3]. In the United alcohol consumption, inflammatory bowel disease and
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calcium and vitanmi D deficiency etc., are related to
BMD and fracture$8, 9].

Telomeres, capping and protecting the termini of
eukaryoticchromosomes from fusion ardkgradation,
are the dynamic nucleoprotel®NA complexes, which
consist of hexameriaucleotide sequences (TTAGGG)
repeatsand associated protective protejd®, 11]. It is
important for chromosomal stability and cellular
integrity. Telomeres are shoremhprogressively during
each cell division. Thus, they are recognized as a
physiologcal marker ofor gani smés age,
finally cause chromosomal instability, cellular
senescence, and eventually cell cycle arrest and
apoptosig12, 13]. Recent studies in the understanding
of human disease processes have shown the roles of
telomere bdlogy in the diseases of human aging and in
some agingelated processefll, 14]. Alterations of
telomere length and telomere dysfunction have been
linked to a wide range of diseases, includcancer,
cardiovascular diseases, type 2 diabetes mellitus
(T2DM) and neurodegenerative diseagEs 17]. Many
findingsthat associate the alterations of telomere length
as well as telomere dysfunction with agdated
impaired homeostasis of boneells which promote
osteoporosishave been reported. In the modeMaéin-/-
Terc/- mutant mice,the low bone mass phenotype
and ageelated osteoporosis are the result of
dysfunctional telomeres that impaired osteoblast
differentiation through accelerating cell senescence of
boneforming cells and their precursor§l8]. In
humans, premature aging syndromes including
dyskeratosig€ongenita and Werner syndrome which are
characterizedby telomere dysfunction commongccur
with osteoporosig19, 20]. Telomere length is often
approximated using the readily accessible leukocyte
telomere lengthLTL), as it is highly correlated with
telomere length in other tissues and can be easily
extracted from blood21]. Based on these findings, it
has been hypothesized that telomere length should be
associated with BMD and osteoporosis. déa et al.
showed that, in women, shortened LTL was
independently correlated with low BMD in spine and
forearm and the presence of osteopord&]. In
Chinese women age@0i 65 years, short LTL was
associated with low BMD at femoral neck and high
osteopootic risk [23]. In a small prospective
observational study in elderly men (age rangé8s1
years), telomere length of peripheral blood leukocytes
correlated with agassociated bone loss at different
distal forearm sites[24]. However, several other
obsenational human studies did not show the
statistically significant associations between LTL and
osteoporosi$25, 26]. Furthermore, in vitro studies with
human trabecular osteoblasts and the measurement of
LTL from osteoporotic women and age matched control

subjects did not support the notion of the occurrence of
a generalized premature cellulaging and accelerated
telomere shortening in osteoporotic patief3]. The
studies, which had drawn inconsistent conclusions, were
either based on limited samples @nly explored the
correlations between LTL and BMD and osteoporosis,
and the epidemiological observational studies might be
subjected to confounding factors and reverse causality
[28]. A study, like randomized controllgdal (RCT),
directly inferring he causal relationship of LTL and
BMD and osteoporosis is helpful in recognizing the
etialobyi of disease iptodesses and identifying potential
treatment strategieddowever, RCTs are difficult or
impractical to perform for its expensive, labor resource
intersive, time consuming and ethical limitations. As an
alternative, Mendelian randomization (MR), mimic the
design of RCT, is a popular yet more convenient
technique totest the causality between an exposure
(telomere length) and an outcome (BMD or
osteoporois) [28].

Mendelian randomization is a technique, using germline
genetic variantsas instrument variables (IV) for
exposure to study the causal relation between the
exposurephenotype and the outcome phenotype.
order to obtain unbiased estimates, M&ea to fulfill
three key assumptions: YIgenetic variants used in
analysis should be significantly associated with the
exposure; V2 genetic variants extracted as instrument
variables for exposure are independent of confounding
factors that are associat with the selected exposure
and outcome; and I\J&the genetic variants affects the
outcome only through the exposure and not via other
biological pathways (i.e., no horizontal pleiotropic
effect) SupplementaryFigure 1 [29]. The aim of our
study is to assess the causal link between telomere
length and BMD under a twsample MR study
framework, in which we will use the summary statistics
from genomewide association study (GWAS) data of
LTL and BMD.

RESULTS
Selection of instumental variables

We selected16 SNPs as instrumental variables to
investigate causal relationships between LTL and BMD
in European ancestry[30]. After performing the
clumping process in which amongst those pairs of SNPs
that had LD Rsquare above thepscified threshold (R
square = 0.001), only the SNP with the lowerdfue P
value retrieved from summary data of Mangino et al.
[31]) would be retained, namely 10 independent SNPs
were left as potential Vs for LTL. Querying these
10 LTL associated SNHs the Phenoscanner database,
we found rs6772228 (PXK), rs10936599 (TERC),
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rs2736100 (TERT) and rs755017 (ZBTB46) were
significantly associated with phenotypes (rheumatoid
arthritis, celiac disease, mean corpuscular hemoglobin,
red blood cell count or bgdfat percentage) which were
risk factors for osteoporosis or low BMD after
Bonferroni correction (p < 0.05/10 = 0.005). The four

SNPs were excluded. Further, based on the assumption

that the genetic variant is independent of the outcome
conditional on the exposure and confounders,
rs11125529 (ACYP2) could be excluded for its
significant association with heel bone mineral density
(P = 4.41€13). Eventually, 5 SNPs: rs7675998 (NAF1),
rs9420907 (OBFC1), rs3027234 (CTC1), rs412658
(ZNF676), rs6028466 (DHX35) eve included as IVs
for LTL in further analyses. F statistic for the
instrumertexposure association was 24.%hich was
much greater than 10, demonstrating the tiny
possibility of weak instrumental variables bias.
Characteristics of SNPs predictive dfet LTL were
shown inTable 1

Two-sample Mendelian analysis for causal link of
leukocyte telomere length with BMDs

We chose 5 independent SNPs associated with
LTL in European ancestry to perform the MR analysis
for the causal link between LTL and FBMD, LS
BMD, FA-BMD, heel estimated BMD, THBMD and
TB-BMD (age over 60)The effect of all the 5 SNPs on
the outcome GWAS was present, and no palindromic
SNPs was found. Among these SNPs, only
rs6028466 was nominally associated with reduced level
of FN-BMD, heel estimated BMD and FTBMD (FN-
BMD: P=0.042, heel estimated BMD: P=0.007 and TB
BMD: P=0.025 respectively). None of the 5
SNPs was significantly associated with BMD outcomes
at the Bonferrontorrected significance threshold

(p < 0.002) (i.e., 0.05B), asshown inSupplementary
Table 1

In two-sample MR analysis, the decrease of LTL did
not have a causal linkith the level of FNBMD, LS-
BMD, FA-BMD, heel estimated BMD, TBMD and
TB-BMD (age over 60) basing on IVW, WM, MR
Egger regression and MRARS methods, as shown in
SupplementaryTable 2,Figure 1 and Supplementary
Figure?2.

Pleiotropy and sensitivity analysis

The MREgger regression results showed that the
horizontal pleiotropy would not bias theausal
effect of LTL on FNBMD (intercept=0.006,
P=0.755),LS-BMD (intercept=0.003, P=0.874), FA
BMD (intercept=0.007, p=0.826), heel estimated
BMD (intercept=0.003, P=0.652), TBMD

(intercept=0.011, P=0.548) and #BVID (age over 60)
(intercept=0.009, P=0.641%upplementaryrable 2

Cochra® s st at i st statistics shevget tha n
there was not statisticallysignificant heterogeneity
among the effects of individudlTL -associated SNPs
on FN-BMD, LS-BMD, FA-BMD and TBBMD (age
over 60) outcomes. However, obvious heterogeneities
existedin the effect of LTlassociated SNPs on heel
estimated BMD (IVW: Q=11.27, df=4,2364.5%,
P=0.024, MREgger: Q=10.41, df=3, P=0.015) and-TB
BMD (IVW: Q=9.525, df=4, ¥=58.0%, P=0.049, MR
Egger: Q=8.268, df=3, P=0.048upplementarylable

2 and Figure 1. Because rs6028466 was nominally
associated with a reduced level of -BND, heel
estimated BMD and THBMD. We conductedMR
analysis after excluding rs6028466. After removal of
this SNP, we observed the causal link between LTL
and FNBMD, heel estimated BMand TBBMD was

not significant and the heterogeneities vanished
Supplementarifable 3 andrigure2.

In the sensitivity analyses, we observed a consistent no
causal association between genetically predicted LTL
andl ev el of B MD -aneoi unt géthachtite
suggested the stability of our resuBpplementary
Figure3.

DISCUSSION

Previous publications reported that the alterations of
telomere length as well as telomere dysfunction played
important roles in ageelated impaired homeostasis of
bone cells which promoted osteoporodi8]. In this
first two-sample MR analysis assessitig causal link

of LTL with BMD, we failed to determine gausal
effect of genetically predicted LTL on BMD, which was
consistent with some observational studis, 24. In
some other publications, they found that shortened LTL
was correlated with low BMD and the presence of
osteoporosis in women or in the eldefB2i 24]. We

d

Al

were not able to conduct separate analyses for men and

women, since the sestratified GWASsummary data
on BMD was not sufficient for performing MR analysis
[32]. To prevent identification of individuals from
summary results, some information of SNPs on- sex
stratified BMD was not included in files. To validate
whether there existed eausal effet of genetically
predicted TLT on BMD in the elderly, we conducted
two-sample MR analysis for age over 60 and did not
found a significant causal link between TLT and the
level TB-BMD.

In the twasample MRanalysis, we selected $ with
genomewide significance andhdependent inheritance
(without any LD) as IVs to detecthe causal link
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Table 1. Characteristics of SNPs predictive oflthweékocytetelomere length (LTL).

SNP Chr Nearby Gene EA OA EAF b Se P valué P value Samplesize removed
rs7675998 4 NAF1 G A 0.80 0.048 0.012 1.00e2 4.35e16 9161 No
rs9420907 10 OBFC1 C A 0.14 0.142 0.014 1.14e11 7.00ell 9190 No
rs3027234 17 CTC1 C T 0.83 0.103 0.012 2.75e8 2.00e8 9108 No
rs412658 19 ZNF676 T c 0.35 0.086 0.010 1.83e8 1.00e8 9156 No
rs6028466 20 DHX35 A G 0.17 0.058 0.013 4.00e3 2.57e8 9190 No
rs6772228 3 PXK T A 0.87 0.041 0.014 4.97e2 3.91e10 8630 Yes
rs10936599 3 TERC C T 0.76 0.100 0.011 1.76e9 3.00e31 9190 Yes
rs2736100 5 TERT C A 0.52 0.085 0.013 2.14e5 4.38e19 5756 Yes
rs755017 20 ZBTB46 G A 0.17 0.019 0.0129 3.40el 6.71e9 8026 Yes
rs11125529 2 ACYP2 A C 0.16 0.065 0.012 6.06e3 8.00e10 9177 Yes
rs12696304 3 TERC C G 0.74 0.090 0.011 5.41e8 4.00e14 9012 Yes
rs1317082 3 TERC A G 0.71 0.097 0.011 4.57e9 1.00e8 9176 Yes
rs10936601 3 TERC C T 0.76 0.100 0.011 1.76e9 4.00e15 9190 Yes
rs9419958 10 OBFC1 T C 0.13 0.129 0.013 5.26ell 9.00el11 9190 Yes
rs4387287 10 OBFC1 A C 0.14 0.120 0.013 1.40e9 2.00el1 8541 Yes
rs8105767 19 ZNF208 G A 0.25 0.064 0.011 1.00e3 1.11e9 9096 Yes

SNP: singlaucleotide polymorphism; Chr: chromosome; EA: effect allele; OA: other allele; EAF: Effect allele frequency;
standard deviation change ieukocytetelomere length per copy of the effect allele; Se: standard erPoralue-: P value
from summary data of Mangino et al.[3Byvalue: P value from original study reports curated by the GWAS catalog.

between TLTand BMD. After excluding the SNPs
associated with phenotypes related to BMD, there were
5 genetic variants finally included as instrumental
variables for further MR analysis. F statistic used to
assess the instrumeexposure association was much
greater than 10, hiing the small possibility of weak
instrumental variables biag33]. To make our
conclusion more reliabjeve utilized four methods of
MR analysis with GWAS summary data of DXA
derived FNBMD, LS-BMD, FA-BMD, TB-BMD, TB-

BMD (age over 60) and ultrasowddrived heel
estimated BMD, finding a consistent no causal
association between genetically predicted LTL lave

of BMD. After removal of rs6028466which was
nominally associated with level of FBMD, heel
estimated BMD and TEBBMD, MR analysis drew the
sane conclusion, and the heterogeneities vanished. The
MR-Egger regression results showed no horizontal
pleiotropy in
where the MR analysis was performed to assess the
influence of each SNP on the overall result indidat
our conclusion can be considered robust and
convincing.

Our research was the first MR analysis on this topic, it
contained several important strengths. First, the causal

camgo U & D a laynsail sere i dghifcantlye associated with LTL

association of LTL and BMD was not distorted by
many conbunding factors. It was mitigated by using
genetic variants as proxies in MR analysis. Second, four
methods of MR analysis on six groups of BMD GWAS
summary data were performed to draw a conclusion.
Third, to avoid pleiotropic effectsye eliminated SNPs
which was recognized associated with confounding
factors through searching the Phenoscanner database
and no pleiotropic effects was detected by -B&ger
regression method. Fourth, sensitivignalysis was
performed and we found the conclusion wéstability.

Last, to reduce potential bias, the GWAS summary data
we drew for LTL and BMDs was from European
descent individuals (except for TBMD (age over 60):
86% European ancestry) and adjustéat many
commonseen factors, such as: sex, age, height and
weight. However, some limitations of olMR analysis
need to be considered. Firgtithough selected SNPs
in their
respective GWASs, yet 2 SNPs (rs7675998 and
rs6028466) did not achievgenomewide significance
with TLT in Mangino et al. study, from which we
acquired summary datg8l]. Besides, the number of
SNPs selected as IVs was limitedjsing the risk that
they were lack of association with TLT. However, F
statistic helped rule out this possibility. We also utilized
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MR.RAPS method in main analysis, it could give a updated MR analysis, it is warranted to validatg
robust inference for Mendelian randomizatiovith findings when more and better 1Vs for LTL become
many weak instruments, and it received consistent available. Second, through searching Phenoscanner
results with other MR analysis methods. In future  database, informatioon pleiotropic effects for some of

A B
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D B (95% CI) ‘Weight D B (95% CI) Weight
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157675998 (TB-BMD) — 029 (-0.01,058) 1140 rs7675896 (TE-BMD (age over 60)) —_— 016(065,034 537
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Figure 1. Forest plots for Mendeliamandomization estimates of the association of leukocyte telomere length on BMDs (IVW method)
(A) FNBMD B) LSBMD () FABMD D) heel estimated BMCE TBBMD and ) TBBMD (age over 60).
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36.93

100.00
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1$3027234 (TB-BMD)

rs412658 (TB-BMD)

rs7675998 (TB-BMD)

rs9420907 (TB-BMD)

Overall (l-squared = 35.4%, p = 0.200)
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T
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Figure 2. Forest plots for Mendelian randomization estimatesthe association of leukocyte telomere length 0§ ENBMD ) heel
estimated BMD andd) TBBMD after excluding rs6028466 (IVW method)
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the included SNPs was not available, which left the
possibility of pleiotropic effects that had not yet been
identified. However, no evidence for the presence of
pleiotropy was found, as indicated by the NBger
intercept testThird, the exposure and outcenstudies
used in twesample MR analysis should not involve
overlapping participants. We were not able to estimate
the degree of overlap in the study. However, bias from
sample overlap can be minimized by using strong
instruments (e.g. F statistic much ger than 10)34].
Fourth, GWAS summary data of telomere length was
from leukocyte, but not the bone tissues. Although
telomere length of leukocyte is highly correlated with
telomere length in other tissud®1l]. Fifth, some
observational studies found ethassociation between
TLT and BMD in women[22, 23]. And there was a
positive correlation ofthe circulating estradiol with
LTL [35. Estrogen can activate telomerase activity
through directly binding to thepromoter region of
hTERT and prevent telomere atening, cellular
senescence and agifge]. It suggested the estrogen
regulation of telomeres might be linked to level of
BMD. However, we were not able to conduct separate
MR analyses for women to test our hypothesis since we
did not have sestratified GWAS summary data for
BMD. Sixth, the GWAS summary data mainly
concerned individuals of European descent, results
might not be fully representative of whole population.
So, we should carefully utilize our conclusion in
racially andethnically diversgpopulations. Seventh, our
MR analysis tested a linear shape of association
between LTL and BMD, whereas it did not take the
possibility of other shapes of association into account.

In this study, we aimed to determine the causal role of
telomere lengthn level of BMD and osteoporosis by
usingtwo-sample MR analysis. However, the results of
our research did not provide evidence to support our
hypothesis. These findings suggested measures to
influence telomere lengthmay have no beneficial
effects on BMD ad telomere length can not be an
indicator to monitor bone mineral densitypdated MR
analysis is warranted to revalidaber findings when
more and better 1Vs for LTL and sexratified GWAS
summary data for BMD are availabloreover, other
factors th& may play causal roles in osteoporosis still
need to be identified and determined to develop
strategies for monitoringpreventing and overcoming
osteoporosis.

MATERIALS AND METHODS
BMD GWAS summary statistics

To obtain a more comprehensive and reliable
conclusion of the causal link between telomere length

and BMD, we downloaded several publicly available
GWAS summary statistics of BMD from the GEnetic
Factors for OSteoporosis Consortium (GEFOS:
http://www.gefos.org/ or got them from the IEU
GWAS database hftps://gwas.mrcieu.ac.yk/ Each
study included was approved by their institutional ethics
review committees, all participangsrovided written
informed consent. Each SNP was tested for association
with  BMD, adjusting for many commosseen
components, such as: sex, age, height and weight etc.

Three separate GWAS summary statistics of European
participants6é Fe mdensity (FWeck
BMD, n=32735), Lumbar Spine bone mineral density
(LS-BMD, n=28498), and Forearm bone mineral
density (FABMD, n=8143) were downloaded from
GEFOS, it is the largest GWAS on DX#easured
BMD to date[6].

Summary GWAS data of ultrasowderived heel
estimated BMD on 426,824 European participants (55%
female) were got from IEU GWAS databd3g

A metaanalysis comprising 56,284 individuals of
European ancestryas performed to investigate the
genetic determinants of Total Bottpne mineral
density (TBBMD) [37]. The metaanalyzedeffect size
estimates were used in this study. The GWAS summary
statistics of TBBMD were downloaded from the
GEFOS website.

To validate thecausal link of telomere length and BMD
in the elderly, GWAS summary stsiics of TBBMD
(age over 60) on 22,504 mixed participants were
downloaded from the GEFOS website. Most
participants were European ancestry (8¢3%).

Genetic instrumental variables

We used the 16 singlaucleotide polymorphisms (SNPs)
previously utilizd by Haycock et al. as Vs to investigate
the causal relationships between telomere length and
specific diseasef30]. A series of quality control steps
were conducted to select eligible instrumental SNPs. As a
first step, SNPs significantly associatedthwiLTL of
Europeans were searched on the GWAS catalog
(https://www.ebi.ac.uk/gwas/ using the genomeide
significance threshold 5x1%) including the seven SNPs
from the largest GWAS for LTL of Europeaascestry
(Codd et al., 2013)[38]. To supplement the list with
additional potential instruments, we also searched and
carefully read the original study reports curated by the
GWAS catalog to identify eligible instrumental SNPs. At
last, we acquired summanjata (i.e., allele frequency,
beta value, standard error, and P values) for all SNPs
identified in previous process from a matalysis of
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GWASSs of LTL, involving 9190 participants of European
ancestry{31]. Each SNP was tested for association with
LTL, adjustingfor covariates, such as: sex and age etc.

SNP validation

In a standard twsample MR study, it is important to
ensure that the instrumental SNPs for the exposure are
not in linkage disequilibrium (LD), since instrumental
SNPs in strong LDmay @use biased results. In this
study, we performed the clumping process with the
European samples from the 1000 genomes project to
estimate LD between SNPs. The SNPs would be
extracted from 1000 genomes data, and LD calculated
between them. Amongst those ngaof SNPs that had
LD R-square above the specified thresholds(frare =
0.001), only the SNP with the lowervRlue would be
retained. In the clumping process, we set the window
size = 10,000 kb.

According to the assumptions of MR analysis, the
selectedinstrumental SNPs should affect the outcome
only through the exposure and not via other biological
pathways (i.e., no horizontal pleiotropic effect exist). To
explore potential violations of this assumption, each
instrumental SNPs was queried againstRhenoscanner
databasehitp://www.phenoscanner.medschl.cam.ag.uk/
When a SNP was associated with another phenotype
other than telomere length, we checked whether the
associated phenotype was asated with BMD by
conducting a literature search. A SNP was excldded

the analysis if it was significantly associated with any
phenotype which was a risk factor for osteoporosis or
low BMD after Bonferroni correction (p < 0.05/ N, N =
the number of EPs queried). Factors significantly
associated with osteoporosis or BMD include rheumatoid
arthritis, celiac disease, mean corpuscular hemoglobin
red blood cell count, body fat percentage, premature
menopause, cognitive impairment and anemia[88].

By default, if a particular requested SNP is not present in
the outcome GWAS then a SNP (proxy) that is in LD
with the requested SNP (target) will be searched for
instead. LD proxies are defined using 1000 genomes
European sample data. The effect of the pr8iNP on

the outcome is returned, along with the proxy SNP, the
effect allele of the proxy SNP, and the corresponding
allele (in phase) for the target SN fEst whether there
was weak instrumental variables bias, namely whether
genetic variants selectess instrumental variables had
weak association with exposure, we calculated F statistic
(F=R(n-k-1)/k(1-R?), R% variance of exposure explained
by selected instrumental variables, n: sample size, k:
number of instrumental variables). If F statistic wagh
greater than 10 for the instrumentposure association,
the possibility of weak instrumental variables bias was
small[33].

Mendelian randomization estimates

We harmonized the exposure and outcome data to
ensurethat the effect of a SNP on the expies and the
effect of that same SNén the outcome, correspond to
the same allele. We combi
coefficients and standard errors) to estimate the causal
associations between LTL and BMD using four
methods, which included inverseanance weighting
(IVW), weighted median (WM), MHEgger regression
and Robust Adjusted Profile Score (MR.RAPS) method.
The IVW method with fixed effect used a metaalysis
approach combiningVvald estimates for each SNP (i.e.,
the b
coefficient of the SNP for LTL) to get the overall
estimates of the effect of LTL on BMD)4Q]. If
significant heterogeneity was observed, a raneffiect
model was applied. A WM methodhight provide
correct estimates of the causdfect even when up to
50% of SNPs wer@valid IVs (e.g., due to pleiotropy)
[41]. MR-Egger regression, basing on the assumption
that the pleiotropic associations were independent,
performeda weighted linear regression of the outcome
coefficientson the exposure coefficients. Egger's test
gave a valid test of the null causal hypothesis and a
consistent causal effect estimate even when all the
genetic variants were invalid I\Vgl2]. However, MR
Egger estimates might be inaccurate and could be
strongly infuencedby outlying genetic variants. The
WM estimate has beewonfirmed to have distinct
superiorities over MHEgger forits improved power of
causal effect detection and lower typarror[41]. Since

we included many weak instrumental variables in the
aralyses,we carried out a recentlproposed method
called MR.RAPS to make our results more religitg.

This method could give a robust inference for MR
analysis with many weak instruments

Pleiotropy and sensitivity analysis

We conductedthe MREgger regression to assess the
potential pleiotropic effects of the SNPs used as IVs. The
intercept term in MR Egger regression could be a useful
indication of whether directional horizontal pleiotropy
was driving the results of a MR analy$i#l]. We used
IVW method and MREgger regressionto detect
heterogeneity. The heterogeneities were quantified by
Cochran Q statistics and statistics to identify whether
there wasa higher heterogeneity between causal effects
estimated using theariants indiNdually than that would

be expected by chance. In our analysByalue of <0.05

or an I? value of >50%would beregardedas significant
heterogeneity. Additionally, we performed sensitivity
analyses to evaluatthe reliability of the association
betweergeneticallypredicted LTL and risk of low BMD.
We per f or-oneodu tfiol evaaraysdsavihéreo n
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the MR was performed again but leaving out each SNP in

turn, to identify if a single SNP was driving the

association.
Ethics

All data sources were diglentified and publidy

available, and thus, nethical committee approval was

required.

All statistical analyses were conducted using R version

3.6.3 (RFoundation for Statistical Computing, Vienna,

Austria), the TweSample MR package $tand STATA

15 software (Stata Corporation, College Station, TX,
USA). P-values <0.05 wereconsidered statistically
significant, unless otherwiseoted. A flow chart about
the analyticalmethods and how the MR analysis was
performed stejby-stepwas shown irFigure 3

Availability of data and materials
All data generated or analyzed during this study are

included in thispublished article and its supplementary
information files

Selection of 16 SNPs associated with leukocyte
telomere length with genome-wide significance

Linkage disequilibrium (LD):
clumping process (threshold: R? > 0.001,
window size = 10,000 kb)

process

10 LD-independent SNPs left after clumping

Quering Phenoscanner database:
4 SNPs associated with confounders and 1 SNP
associated with heel BMD were excluded.

A4

were left as instrumental variables

5 SNPs associated with leukocyte telomere length

length) and outcome data (BMD)

Extract BMD GWAS summary data for the 5 SNPs
and harmonized the exposure (leukocyte telomere

v

Mendelian randomization analysis

BMD)

(exposure: leukocyte telomere length, outcome:

Pleiotropy, heterogeneity and sensitivity analysis

Figure3. Flow chart about the analytical methods and procesfstwo-sample MR analysis.
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absorptiometryBMI: body mass index_TL: leukocyte
telomere lengthRCT: randomized controlled trigVIR:
Mendelian randomization 1V: instrument variablg
GWAS: genomewide association stugySNP: single
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Supplementary Figures
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Supplementary Figure IThe assumptions of the tw@ample MRanalysis.
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Supplementary Figure Zcatter plots for Mendelian randomization analyses of the association of leukocyte telomere length on BMDs
(A) FNBMD B) LSBMD ) FABMD D) heel estimated BMDE{ TBBMD and ) TBBMD (age over 60). Analyses weonducted using the
conventional IVW, WM, MEgger and MR.RAPS methods. The slope of each line corresponding to estimated MR effect per method.

666D-FAFA2Y M N | DLb D



